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AbslracL ?he Semiclassical Einstein-Brillouin-Keller vonex lube quantization for the 
quasi-energies in time-periodic Hamiltonians is studied for lypicnl systems, when the 
wrtex tubes of the quantizing tubes may have mmplicaled SLmctures in extended phase 
space. Numerical application to a periodically driven Duffing (quanic) (scillator yields 
Semiclassical quasi-energies in excellent agreement with the exact quantum mechanical 
ones for lhe regular states. 

1. Introduction 

The intricate interrelation between nonlinear (chaotic) classical dynamics and linear 
quantum dynamics appears to be of current interest. In particular the semiclassical 
quantization of conservative systems of n degrees of freedom has been studied in 
much detail. The semiclassical Einstein-Brillouin-Keller (EBK) quantization (see the 
review articles 11, 21) is based on the existence of invariant tori in classical phase 
space and was originally only defined for integrable systems. Fhr weakly disturbed 
integrable systems adiabatic switching methods (see e.g. [3]) as well as interpolation 
techniques have been developed (see 14, 51 and [6] with references therein). They 
allow an EBK quantization for non-integrable systems in phase space regimes where 
invariant tori still exist. In strongly chaotic regimes, however, tori are rare or fail 
to exist at all. For such cases semiclassical periodic orbit theories as developed, for 
example, by Gutzwiller 171 are currently under investigation. 

A theoretically attractive reduction in the number of degrees of freedom 
can be achieved by considering one-dimensional time-periodic systems, which are 
considerably simpler to study than, for example, two-dimensional conservative ones. 
They retain, however, most of the characteristic chaotic dynamics. In addition, such 
systems model the dynamics of atoms or molecules in strong laser lields, which opens 
interesting experimental perspectives. The dynamics may depend sensitively on system 
parameters, like field strength or laser frequency, which an be varied tu explore the 
manifestion of classical chaotic phenomena in quantum mechanics experimentally. 

The present paper contributes to the understanding of the structure of the quasi- 
energy spectrum of such time-periodic systems hy investigating the semiclassical EBK 
quantization of the regular part of the spectrum. Let us recall that the quasi-energy 
states for the Hamiltonian 

l a p ,  q ,  1 )  = A(P, q>  t + T) (1) 
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amdefined by 

(2) 
i c , t l h U  ( 

~ - ( q , t )  =e-  L1 ¶ , t )  

with T-periodic functions ue(q , l ) .  The quasi-energies, E,,  are defined up to an 
integer multiple of hw = h27r/T. In section 2 we give a short resume of the 
semiclassical EBK theory for quasi-energies, which relies heavily on the recent work 
by Breuer and Holthaus [SI. 

The procedure for numerical quantization is addressed in section 21 and results 
are presented in section 4 for a harmonically driven quartic oscillator. This system, 
which is also known as a frictionless Duffing or Ueda oscillator 19, 101 has been 
studied recently in quantum mechanics [ l l ,  121 (see also [13] for a quantum study 
of the kicked quartic oscillator). It was found in [ll, 121 that the quantum quasi- 
energy states quite naturally fall into two classes, namely extended and localized 
states, which closely parallels the classical behaviour. The quasi-energy states, which 
are found to be exponentially localized in the space of states of the field-free 
Hamiltonian, are localized in the regular region of classical phase space, whereas 
the extended states mostly populate the chaotic phase space region, as demonstrated 
by the quantum Husimi phase space densities. In the present article it is shown that 
this correspondence can be sharpened: all the states classified as localized in the 
previous quantum computation could be obtained by EBK vortex tube quantization, 
i.e. they are supported by regular classical dynamics. 

2. Semiclassical quantum muditions 

The semiclassical approximation for time-periodic systems can be achieved by 
constructing an extended phase space in which the system appears as time- 
independent so that the well known EBK quantization can be implemented. A 
comprehensive description of this theory can be found in [SI. Here we will 
confine ourselves to the onedimensional time-periodic case and put emphasis on 
the difference to time-independent two-dimensional systems. Suppose we have a 
classical Hamiltonian 

H ( p , q , t ) =  H ( p , q , ~ + T )  (3) 

with period T = 27r/w. Such a Hamiltonian is not usually an integral of motion. 
However, by regarding 1 as a variable and introducing an additional .canonical 
momentum p , ,  a new conserved Hamiltonian H, the quasi-energy function, can he 
constructed in an extended phase space { q , p , t , p , )  by 

- 

- 
H ( q , p , t , p t ) =  H ( q , P , t ) +  ~ t .  (4) 

The new p ,  is the conjugated momentum to the time coordinate, as can be seen 
immediately by utilizing the conservation of (we have now to distinguish between 
the time wriable 1 and the time parametrizing the Hamiltonian flow in the extended 
phase space; the latter will be denoted by s in the following). 
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The symplectic two-form in extended phase space is hence given by 

wz = p Adq + p ,  Adt. (6) 

It is important to note that invariant surfaces in such systems are not topologically 
two-dimensional tori hut non-compact cylinders. In the case of a time-periodic system, 
however, we can regard t as an angle mriable by identifying t and t + T. In the case 

The EBK quantization condition selects a countable number of tori by requiring 
nf BE ~tegrab!e Syste- th.e pkrse spa" h cGEp!e:e!y !i!!ed %$th such ix:wiaxt tx i .  

(7) I .  , = - :, i, pdq + p ,  dt = h ( n j  + + p i )  ni E 23, i = 1,2 

where y,, i E {1,2) denotes two independent closed paths (loops) on the torus which 
cannot be homotopically deformed into each other and pi are the Maslov indices of 
the paths corresponding to the number of turning points. We choose the loop yI 
lying in the plane t = 0 whereas yz is a path connecting a point ( p ,  q) at time t with 
the same point at time t + T .  Since there is no turning point in time, it is always 
possible to choose yz such that p2 = 0. After solving equation (5) for p ,  on the 
quasi-energy shell 

- 
E = H ( q , p , t , p , )  =constant (8) 

the quantization conditions adopt the form: 

with the Poincar&.Cartan form 

w' = p d q  - H dt. (10) 

Since the variable p, does not enter into the equations of motion, a shift of p ,  
by a constant shifts the quasi-energy but does not affect the structure of the quasi- 
energy shell and therefore not the value of the integrals of the Poincari-Cartan form. 
This is a remarkable difference to general two-dimensional systems. An immediate 
consequence is that the second quantization condition (9) can be fulfilled for any 
quantum number nz yielding a quasi-energy which is only defined modulo hw 

in complete agreement with quantum mechanics. Futhermore it is of interest 
to observe that-although the chaotic states cannot be quantized by wrtex tube 
techniques-the total number of these chaotic states can be determined. The vortex 
tube belonging to an outer regular state, say n = 107, does not only provide a 
semiclassical quantization of this particular state, but the phase integral also measures 
the total number of states (regular or chaotic) inside the vortex tube. 
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2.1. Numerical method uring Poincarik surface of section 

A practical method of semiclassical quantization uses Poincark's surface of section 
(see e.g. [14]). In a two-dimensional autonomous system one specifies two surfaces 
of section, e.g. planes defined by setting one coordinate equal to zero. While 
propagating in time a quasi-periodic trajectory generates in each surface of section 
an increasing number of points which ultimately fill a closed curve densely. These 
invariant curves are the paths along which the action integrals are evaluated. Such 
a computation has to he iterated for different initial coordinates and energies until 
the two quantization conditions are fulfilled simultaneously. As already pointed out, 
one-dimensional time-periodic systems require only a single quantization condition 
and a subsequent periodicity condition for determining the quasi-energy, which is a 
simplification compared to the case of a general twodimensional systems. A natural 
choice for the surface of section iS a plane 1 = tu, i.e. the trajectory mrdinates  
( p , q )  at times t = 1, + nT, n E Nu. A calculation of a second Poincark section 
is not necessary for a quantization of the vortex tube although it could be used in 
the subsequent computation of the second integral (11) and hence for determining 
the quasienergy. If the motion in the phase space region under consideration is a 
rotation, the specification of a second surface of section would cause no problems; 
each plane defined by q = qo = COnstant can be used. In contrast, in the case of a 
librational motion, such a simple specification of a surface of section will, in general, 
fail because the invariant torus can exhibit complicated, periodic deformations and 
spatial movements, such that it will not intersect the plane q = qu at every time. 
Especially in this case we propose to determine the quasi-energy by evaluating the 
action integral along a true trajectory, Le. a solution of the equations of motion, as 
described later. 

For an integrable system the phase space can be parametrized by action-angle 
variables. The classical motion on a 2-torus, specified by the two actions I,, I,, 
is determined by its frequencies w,, w2 and in the privileged angular coordinates 
appears to be rectilinear in time 

i p i ( t )  = 'pi(0) + w i t  i = 1,2. (12) 

The time periodicity of the system already ensures that the second of the angle 
variables is given by 'p, = w t ,  ie. the frequency w2 coincides with the driving 
frequency w, and hence 

w, = w n .  (13) 

If the frequencies w,. w, are incommensurable, i.e. the winding number 

n = w,/w,  (14) 

is irrational, then a trajectory winds densely around the torus and for any continuous 
function f('p!?y,) on the torus its time average along a trajectory is equal to its space 
average [15, 161: 

f(cp)drp = lim f(rp(0) f w t ) d t .  (15) 
7-00 r 
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For an irrational value of R it can he approximated arbitrarily close hy rational 
numbers. If k / m  is such an approximation, a trajectory started on the torus will 
almost close after m periods in time while winding nearly k times around the torus 
in the other direction. The trajectory is homotopic to a path consisting of m times 
the path yz plus k times the path y, (see figure 1) .  The action along the trajectory 
is hence approximatively given by 

mT 1 rmT 
I ( m T )  = - ( ~ 4 -  H ( p , q , t ) ) d t +  - ~ ; ; ~ = ( k I ~ + m h ) . ( 1 6 )  

277 J, 
This relation is exact in the limit k , m  + 00 with k / m  -, R and we obtain the 
precise result 

This equation expresses a time-averaged version of the Legendre transformation 
between the quasi-energy E and the Lagrangian L.  Inserting the expressions for 
the quantized actions (9) yields 

Since E is defined only up to multiples of hw, it is convenient to introduce an angle 

Equation (18) suggests performing the quantization in two steps: 
(i) Compute a bincar6 section for different initial coordinates ( y , q )  until the 

quantization condition for I, is met. 
(ii) Start a trajectory on this k e d  torus, integrate the Lagrangian and determine 

the winding number R. Inserting these values into equation (18) yields the quasi- 
energy. 
?ivo aspects of this procedure need further considerations. First there is the practical 
problem of determining the winding number R which will be discussed in section 
3. Second, there is the notorious problem in torus quantization of non-integrable 
systems due to resonances. We will devote the following section to this problem. 

2.2. Quantization near resonances 

A resonance corresponds to a commensurable frequencies U,, wz yielding a rational 
winding number 

In such a resonant case it is not possible to construct an invariant torus just 
by integrating a single trajectory sufficiently long in time. If the system under 
consideration is integrable, an invariant torus does exist but the Poincar6 section 
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mum 1. Periodic vortex hlk in mended phase space. The trajectories starting on the 
invariant cuwe 71 sweep out the surface of a vortex tube and end at lime tk = to+ mT 
on an invariant cuwe 71 congruent to 71. Also drawn is a path of a single trajectory 
7 starting at PO winding k timm around the vortex t u k  and ending at Pk, and a 
o..'"... ILL.,". p L . .  ,K ".e. L Y l l l l L L L I  .I,* Yll l ln l  p",. 111111 LI I .z  1111d1 r-"", 1 1 I I I I " Y L  'luy 
winding. Evidently 7 and y~ intersect at cxactly k + 1 points Po, . . . , Pk and thus form 
k oriented mmplete cycles cI which a n  each k continuously deformed on the surface 
into 71. Hence the integral of the PoincarECartan form along the sum of the two 
oriented paths 7 f€ m is the same as far the sum of the cycles c ,  or k t ima the cycle 
7 0 .  

'..,li"L,~ _,,..._ "",I. -- .I.". -"..a..*" .I.- i"i.i^l "A". ..*.L .L̂  =-^I "":... ... :.L .̂.. 

of any rrajecrory consists oniy of m points, because aii trajectories are periodic. in 
practice, this does not cause serious difficulties, since one can always find a nearby 
invariant torus with an irrational frequency ratio satisfying the quantization condition 
arbitrarily well. However, for a perturbed system, the KAM theorem tells us that the 
tori in the neighbourhood of a k / m  resonance are usually destroyed and instead we 
find an island chain embedded in a stochastic layer. The centre of the islands are 
the intersections of an elliptic orbit of period m with the surface of section and in 
between one finds m hyperbolic fixed points, whose homoclinic intersections generate 
the chaotic motion around the islands. The area of this stochastic band depends on 
the strength of the perturbation and the denominator m of the frequency ratio (see, 
e.g., [17, 181). 

When trying to perform torus quantization for such a system one 8 faced with the 
problem that there is a countable number of such bands, corresponding to intervals 
in the action I, ,  where no closed invariant curve exists. For weak perturbations when 
the resonance bands are narrow and do not overlap, it is possible to find invariant 
curves enclosing them and thus providing bounds for the action I,. In such a case 
we still expect the torus quantization to yield reasonable results, if we use nearby 
tori and apply an interpolation technique which can be rigorously derived for the 
integrable case. Suppose we perform the calculation of the quasi-energy according 
to equation (iSj not on the quantized torus bur on a nearby torus with an action i, 
differing by AI,  from the quantized one. Keeping now the quantized action I ,  fixed, 
E can be regarded as a function of I, only. An interpolation formula can be derived 
by expanding E in a Bylor series. The first derivative is given by the Hamiltonian 
equations in action-angle variables 

leading to 



EBK quanfization of quasi-enetgies 6161 

The first derivative of E with respect to I, obtained from equation (18) 

yields a relation between the derivatives of the frequency and the averaged Lagrangian 
when compared with the Hamiltonian equations (21) 

which is given here for completeness. Considering now the quantized torus I, +A I, = 
h(nl  -t i p , ) ,  equation (22) gives in first order 

En,,> = 4I1) .f w,A1, (25) 

which is nothing else other than a local harmonic oscillator approximation (see also 
[6]). Adding this correction term to equation (17), it takes the same form as equation 
(18) valid on the exact torus. This implies that the interpolation formula 

'ntnx('1) = b n z  + T"wI(II)(~, + :PI) - ('('I)), (26) 

which uses the quantized action rather than the actual action I,, already includes the 
first-order correction. In higher order we obtain 

= Znln2(1l) - f 4 ( ~ d A I d 2  t o(A11)3. (27) 

There are two remarkable advantages of our quasi-energy formula (26): 
(i) Only the data of a single trajectory are utilized to determine a quantizised 

quasi-energy in contrast to other approximation methods (see e.g. [4])). 
(ii) Formula (26) requires no phase space area computation. This implies that 

one can use as well a resonant trajectoly for determining the quantized quasienergy, 
since (L) and 52, = wi2 are also well defined for such trajectories. 

3. Numerical procedure 

In order to determine the tori carrying quantized actions 

(28) I I ,  = h ( n +  2 )  

in the quasi-integrable region of phase space we compute numerically the symplectic 
area f d p  A dq inside the closed invariant curves and/or the line integrals J pdq 
along the invariant curves. Each invariant curve intersects the @xis twice so that the 
tori can be uniquely labelled, e.g. by q> ,  which is the larger one of the intersection 
coordinates. In this way the actions are functions of a well defined variable I = I ( q , )  
and the search for invariant curves satisfying (28) can be automated by an algorithm 
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like regula faha or Newton's method. Newton's method would usually converge 
within 1% of h after only a few iterations except for those tori near resonances large 
compared to h, which have to be found by trial and error. Once the quantized 
tori have been found the Lagrangian function can be integrated along a periodic 
or quasi-periodic trajectory to yield the 'average Lagrangian' ( L )  of equation (15). 
As a direct consequence of PoincarBs recurrence theorem a trajectoly on the torus 
will eventually come arbitrarily close to its starting point. This ensures that for any 
starting point on the torus and any 6 > 0 there is a time tm(&] = m(a)T, m E N, 
for which the trajectory is periodic within an error smaller than 6 after which the 
computation is stopped. More precisely, there is an optimum way for approximating 
an irrational winding number by rationals, namely the series of its continued fraction 
approximants [17] kj  /mj , j E IN which converges like 

in contrast to the inequality 

1 I"-+i 
for an arbitrary approximation k / m .  This shows that for a desired accuracy A n  
of R the number of iterations necessary, is only of the order l/m. Hence, the 
use of a recurrence condition saves computation time compared to a fixed iteration 
limit. We emphasize that the determination of the winding number needs special 
care due to the high accuracy required especially for large quantum numbers nl. For 
example when n, > 100 the quasi-energy formula (18) indicates that R has to be 
determined with an error less than lo-' in order to achieve an accuracy of 10-3h for 
the quasi-energies. The use of this recurrence condition reduces the number of time 
periods necessary to about I d .  

In case of a rotational motion in phase space a determination of the winding 
number is easy. If one had simultaneously calculated two surfaces of section each 

number of points in each surface of section. As already mentioned in section 21, this 
method using two surfaces of section will usually not work in the case of librational 
motion. In general the wrtex tubes formed by the quantized tori will weave in a 
complicated manner through extended phase space (p ,  q ,  1 )  along the time axis (see 
figure 1). Thus the vortex tube as a whole can perform complete windings around 
a fixed reference line (pR,  qR, t )  which should not be mistaken as a winding on the 
torus itself. 

The examples of a linearly forced and a parametrically excited [19] harmonic 
oscillator do not show such complications, because in these cases all vortex tubes 
remain straightly fixed in the qdirection and only oscillate in the pdirection. Another 
example studied hy Breuer and Holthaus [SI, a driven particle in a box, was treated 
only approximately in the adiabatic or low-frequency limit, where the need and 
difficuliies of evaluating phase space integrals along paths of the actual vortex tubes 
could be circumvented. 

For the general case, the following methods for determining the winding number 
on the torus are suggested: 

~-I?t-h?iIl.?g oze of the iIl?depecdeI..t pet@. -fl, TZ, one wou!d rimp!y SkC the rrtio Of thP 
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1. Suppose there b a reflection symmetry in the surface of section whose symmetry 
axes intersects every torus twice. These two intersection points can be identified with 
the angles ‘pl = 0 and (D, = T ,  respectively. Counting the number m ( k )  of times 
the point of intersection changes its orientation with respect to the symmetry line 
(i.e. the number of jumps across this line) while being iterated k times, we obtain 
an rational approximation for R. After k iterations the angle p, has increased by 
(D, = kR. In the case 0 < R < this implies that ‘p, has passed through 0 or T 

m =  [2kQ] or m = [ZkR] + 1 (31) 

times, depending on the initial angle. Here [ ] denotes the largest integer smaller 
than the argument. We thus obtain for the winding number: 

m m - 1  
- < R < -  2k 2k 

which obviously converges for large m. The proposed method does not distinguish 
between winding numbers which differ by an integer since they produce the same 
Poincare map, as does the frequency 1 - R. This implies that the winding number 
cannot be uniquely determined by utilizing only the points in the surface of section; 
it is therefore necessary to determine the winding at least for one trajectory along its 
full length by a method like the following: 

2. ’like a reference trajectory inside the torus, preferably a periodic orbit, and 
draw a straight line from the reference trajectory outward to the chosen trajectory on 
the torus at any instant of time. Under the phase flow the so constructed line will 
rotate (not necessarily monotonically) in the ( p ,  q)-plane and the average number 
of rotations in the limit of infinite time yields the winding number 0. Another- 
maybe even better-way is by choosing two diflerertt trajectories on the torus, through 
which a line is drawn. Then the average number of complete rotations is an invariant 
property which is experienced by all such lines connecting two different trajectories 
on the torus. This follows from the observation that three different points A, B, C 
retain their relative ordering on the torus for all times, i.e. the trajectories which 
wind around the vortex tube cannot ‘overtake’ each other because of the uniqueness 
theorem for the equations of motion. 

4. Results for a non-integrable system 

As a model system we consider a forced quartic oscillator 

H ( t )  = - P2 + bq4-  XqCOS(wl) 
2 m  (33) 

which is a special case of the classical Duffing Hamiltonian and was shown to 
be chaotic (see e.g. [20]). The system typically exhibits both regular and chaotic 
motion in coexistence as predicted by the KAM theorem. The special phase space 
structure of this coexistence depends on the four parameters, which are certainly 
not independent (in fact, three of them can be removed by rescaling). Recently, 
the quantum mechanical quasi-energies and Floquet eigenstates were studied for this 
system [ I l l .  The authors distinguished between localized and non-localized Floquet 
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states and were able to relate them to three different regimes in classical phase space. 
Here we will analyse the quantum-classical relation in more detail by performing 
the EKB quantization as described earlier. A-, already mentioned in [ll] for the 
parameter choice m = 1, b = 1/4, w = 1 and X = 1/2 the phase space exhibits 
a clear separation into three different regions. The Poincark section in figure 2 
shows a central stability island embedded in a chaotic sea without further obvious 
island structures. This sea is again separated very clearly from the outermost area, 
.&id! !nokc cerr?p!ete!y re.gv!ar, ic. the stochastic layers around rational wi-ndlng 
numbers are so narrow, that they cannot be distinguished from invariant tori. This 
phenomenon is quite typical for all parameter wlues ( b  > 0), and has also been 
observed in other time-dependent systems (see, e.g., [21]). The details of the inner 
stability region, however, depend on the stability properties of the inner fixed point 
and do thus MY with the parameters. For our special parameter choice the winding 
number of the tori around the fixed point wries from 0 = 1.3963 near the fmed 
point to S2 = 1.3765 close to the border to the chaotic sea. A continued fraction 
expansion shows that a golden mean torus with S2 = 2 - (& - 1) /2  is contained in 
this interval whereas its first rational approximants (S2 = 3/2,  4/3, 7/5, 11/8) are 
outside of this interval. A closer inspection of the border shows that it is dominated 
by two quite broad period-eight island chains, corresponding to the 11/8 approximant 
of the golden winding number. The stability island hence corresponds to the winding 
number interval between the thud and fourth approximant of tne goiden mean. Since 
there are no rational numbers with smaller denominators approximating the golden 
mean better than the continued fraction, this explains, according to the KAM theorem, 
why the stochastic bands inside the stable island are so narrow. The broadest of them 
will correspond to the fifth approximant of the golden mean (S2 = 18/13). 

P 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 ~ 

q 
5 

% ! ! e  2. ?dnc?rk E'E%P of xction for the Duffing millator (18) with parameters 
m = 1, w = I ,  b = 114, X = 113. Three regions in phase space can k clearly 
distinguished an inner stability bland, a dlaotic sea and an outer quasi-integrable 
ngion. 
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4.1. Semiclassical and quantum quasi-energies 

For comparison with quantum calculations the classical phase space will be measured 
in units of h = 2rrh and the numerical values given later are for h = 0.015 which was 
chosen in the quantum computations in [ll]. Numerically, we determined the area of 
the stability island to be 23.65h if one excludes the period-eight island chain. Outside 
the island chain we still detected a single toms enclosing the inner stability island 
having an area of 27.28h. Beyond this torus there are further island chains whose 
stochastic layers, however, do overlap thus preventing the existence of further closed 
tori. A trajectory started here is only separated by partial barriers (cantori) from the 
sea of global chaos. The area of the chaotic sea including the inner stability island is 
smaller than 104.7h, which was computed from a numerically detected torus enclosing 
the chaotic sea. Concerning the quantum states, one could expect 23 ‘regular’ states 
corresponding to the inner stability island, three or four states corresponding to the 
period-eight island chain and a number of 7 6 7 8  ‘chaotic’ states. All further quantum- 
states belong to the outer almost regular regime and should hence be accessible to 
EKB quantization, thus allowing the attachment of semiclassical quantum numbers 
starting at about 104. 

The results of the EBK quantization for the two regular regimes are presented 
in tables 1 and 2 in comparison with quantum mechanical results for the first 132 
states. Notice that there exist no quantum numbers which can be attached to the 
quantum states. For convention the quasi-energy states have been ordered according 
to increasing values of the expectation value of ( H ( t  = 0)) and the listed number a of 
the states simply counts the states in this ordering, starting from a = 0. In addition 
to the quasi-energy we have evaluated the classical average of the Hamiltonian at 
time t = 0, which can also be compared with the quantum result. In the tables only 
those states, attained semiclassically, are listed though the remaining ‘chaotic’ states, 
indicated by dots, were also determined quantum mechanically [ll]. 

When sumeying the tables the following remarkable observations can be made. 
First of all, the agreement between the semiclassical and quantum mechanical results 
is, for both the quasi-energy-phase 0 and the averaged Hamiltonian, very good. One 
should keep in mind that 0 is rescaled by ti (see equation (19)), and by that its 
inaccuracies should not be compared with h but rather with 27r. For most of the 
values, the deviations are smaller than W3, the only exceptions are some states in 
table 2 close to the border of the chaotic sea, where we find deviations which are 
larger by one digit. 

Those states where the quantization condition could not be fulfilled within an 
error of O.lh in the action are marked by a ‘t’. Nevertheless, the interpolation 
formula (26) provides even in the latter case satisfactory results for the quasi-enegies. 
A closer inspection of the deviations in the values of 0 shows that for the low 
states in table 1 most of the semiclassical values exceed their quantum mechanical 
counterparts whereas for the higher states in table 2 one can observe the contrary. 
These systematic deviations are due to the fact that equation (26) provides a linear 
approximation to the quasi-energy and equation (27) tells us that the sign of the 
secondader  correction is opposite to the sign of the slope of the function Q(1). 
Note that this function is monotonically decreasing in the inner stability region and 
increasing in the outermost region with a minimum at I 108 (for a discussion of 
the role of the minimum in n ( I )  see 18, 211). 

Comparing a, the quantum mechanical denumeration of states, with the 
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’bbk I. M e r  quasienergis 8 = 0 t h  arranged m increasing order of the average 
energy ( H ( t  = 0)) in mmparison with nsulls from the semiclassical ~ B K  quantization. 
Also listed is the semiclassical quanlum number n and the classical frequency ratio n. 

Quantum mechanical Semiclassical 

( ~ ( t =  0)) e 8 ( H ( t  = 0)) n ” 
1.3963 0 o 0.2702 3.1428 3.1425 0.2702 

1 azo6 5.6304 5.6300 0.2806 1.3956 1 
2 0.2911 1.8303 1.8282 0.2910 1.3948 2 
3 0.3015 4.3090 4.3084 0.3015 1.3941 3 
4 0.3120 0.5031 0.5W 0.3120 1.3934 4 
5 0.3226 29699 29692 0.3226 1.3927 5 
6 0.3332 5.4353 5.4343 0.3333 1.3920 6 
7 a3439 1.6130 1.6121 0.3439 1.3913 7 
8 0.3546 4.0693 4.0689 0.3546 1.3906 8 
9 0.3653 0.2378 0.2342 0.3653 1.3898 9 
10 0.3759 26847 26837 0.37M 1.3891 10 
11 0.3866 5.1266 5.1267 0.3867 1.3883 11 
12 0.3972 1.2803 1.2796 0.3973 1.3874 12 
13 0.4078 3.7118 3.7112 0.4079 1.3866 13 
14 0.4184 6.1380 61385 0.4184 1.3857 14 
is 0.4289 22753 22762 0.4289 1.3848 15 
16 0.4397 4.6900 4.6901 0.4393 1.3839 16 
17 0.4601 3.2187 3.2188 0.4559 1.3819 18 
18 0.4702 5.6152 5.6143 0.4715 1.3808 19t 
19 0.4769 0.8158 0,8152 0.4497 1.3829 17 
20 0.4804 1.7220 1.7226 0.4803 1.3759 20 
21 0.4905 4.1055 4.1054 0.4904 1.3188 21 
22 0.5052 0.1991 0.1995 0.5006 1.3117 22 
23 0.5107 25688 25702 0.5113 1.3165 23 
24 0.5210 1.3518 
25 0.5459 29332 
26 0.5638 0.5966 0.5891 0.5366 1.3733 27t 
27 0.5727 5.2811 
... ... ... 

semiclassical quantum number n one immediately notes that they coincide (apart 
from one exception) in the inner almost regular region up to number 2.3 ana in 
the outer region from number 109 onwards. Close to the border to the chaotic 
sea, however, the quantum mechanical ordering fails, especially in the outer region 
(table 2). Here, the sequence of five regular states is interchanged and some chaotic 
states are mixed among them. The semiclassical quantization provides here a ‘correct’ 
ordering and hence a separation of ‘regular’ and ‘irregular’ states. 

4.2. Density projections of tori and wavefunctions 

For regular motion the classical trajectories are confined to a vortex tube, which 
appears in the Poincar.4 section as a smooth closed curve, a torus, which is invariant 
under the Poincar.4 map. 

For the Duffing oscillator under study, tori in the (outer) quasi-integrable domain 
with quantum numbers n > 116 form convex invariant curves in the (p,q)-piane. 
The ton closer to the chaotic sea with 104 4 n < 116 develop a concave ‘nose’. 
Characteristic examples are shown in figure 3 for the states n = 0, 105, 107 and 131. 
The classical phase space tori have a close resemblance in quantum mechanics. Figure 
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lhbk 2 Higher quasienergies 8 = e T f h  arranged in increasing order of the average 
energy ( H ( t  = 0)) in "parison with resuls from the semiclassil7dl UIK quantization. 
Alm listed is the semiclassical quantum number n and the classical frequency ratio R. 

Quantum mechanical Semiclassical 

a ( H ( t  = O ) )  8 8 ( H ( t = 0 ) )  n " 
... 
53 
94 

97 

101 
102 

1W 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
I24 
125 
126 
127 
128 
129 
1% 
131 

... 

... 

... 

... 
1.0150 
1.0193 

1.0298 

1.0414 
1.0417 

1.1150 
1.2048 
1.2841 
1.3502 
1.4055 
1.4560 
1.5006 
1.5417 
1.5801 
1.6164 
1.6510 
1.6842 
1.7163 
1.7474 

1.8073 
1.8262 
1.8647 
1.8927 
1.9204 
1.9477 

... 

... 

... 

1.7777 

... 
1.0963 
6.1389 

4.8484 

3.5063 
23091 

3.5698 
4.9492 
0.1780 
1.8060 
3.5319 
5.3419 
0.9429 
28935 
4.9049 
0.6892 
28089 
4.9779 
0.9104 
3.1704 
5.4728 
1.5328 
3.9153 
5.2594 
25098 
5.0028 
1.2473 

... 

... 

... 

1.1198 
6.1507 

4.8577 

3.5162 
23256 

3.5696 
4.9463 
0.1728 
1.8014 
3.5279 
5.3386 
0.9390 
2.8917 

0.6887 
2.8078 

0.9086 
3.1688 
5.4714 
1.5316 
3.9143 
5.1655 
2.5088 
5.0027 
1.2466 

4.9033 

4.9774 

1.0169 
1.0227 

1.0319 

1.0400 
1.0359 

1.1102 
1.2062 
1.2852 
1.3509 
1.4070 
1.4569 
1.5013 
1.5403 
1.5806 
1.6153 
1.6513 
1.6853 
1.7172 
1.7479 
1.7782 
1.8088 
1.8365 
1.8649 
1.8927 
1.9204 
1.9481 

1.1946 
1.2027 

1.2W9 

1.2154 
1.1931 

1.2074 
1.2305 
1.2506 
1.2675 
1.2818 
1.2945 
1.3055 
1.3151 
1.3248 
1.3331 
1.3415 
1.3493 
1.3564 
1.3633 
1.3698 
1.3764 
1.3824 
1.3883 
1.3939 
1.4000 
1.4051 

1W 
105 

105 

104 t 
108 

109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
1 27 
128 
129 

1.9746 3.8089 3.8083 1.9750 1.4104 130 
2.0013 0.1203 0.1199 2.0019 1.4157 131 

4 shows as an example the Husimi phase space density, i.e. a locally Gaussian (width 
h / 2 )  smoothed phase space distribution, for the quasi-energy state a = n = 107. 
This quantum density clearly follows the classical phase space torus shown in figure 3. 
Most interestingly, one observes a pronounced quantum localization in phase space 
in the vicinity of the 'nose' of the classical invariant curve, where also the classical 
density accumulates (note the logarithmic scaling of the contours drawn in figure 4). 

The classical density in position space, pd, is computed by sampling the positions 
q ( t , )  of the trajectory following the quantizing vortex tube at times t = 2 ,  = nT 
in a histogram. The resulting distribution is the projection of the phase space torus 
in the stroboscopic Poincare map onto position space (note that the density on such 
a torus is not uniform). At the critical points of this projection, the caustics, the 
projection is vertical giving rise to square root singularities in the classical densities. 
Note, that the classical momentum, p j ( q ) ,  is generally a multivalued function, whose 
different branches, j, are connected at the critical points. 
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-3 ' 
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 25 

9 

Figure 3. Four quantized tori with Semiclassical quantum numbers n = 0, 105, 107 and 
131 for which densily pmfiles were calculated. The tori with n = 0 and n = 131 an 
convex and have only two caustics. The ton with n = 105 and 107 have both a concave 
'n-' giving "se to a third caustic. 

F l p m  4 Quantum mechanical Husimi phase space density for quasi-energy Stale 
n = 1W (01 = 93), which is atremely localized in phase space. Contour lines of the 
densities on a logarithmic scale at values lo-', lo-'. . . . in arbitrary units a n  shown. 
The density a1 the m i m u m  (marked by a uoss) is 3.3 x 10@ ll,e mrresponding 
classical t o m  (compare figure 3) is shown as a bmken curve. 

The quantum mechanical density e 1 $ 1 2  has an oscillatory structure due to 
the nodal lines of the wavefunction. XeGrtheless, one can construct comparable 
'coarse-grained' ciassicai and quantum mecnanicai densities &, and &,,,,, by iiiking 
local averages. The spatial densities of the quantum quasi-energy states in the 
integrable region compare well with the classical densities on the associated tori when 
both densities are folded with a Gaussian of minimum uncertainty width U = m. 
In the classical case this is equivalent to folding the invariant phase space density 
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Plgurr 5. Classical and quantum mechanical density profiles. Ihe classical density ed(q)  
(peaky full "e), lhe Gaussian averaged dassical density & ( q )  (smooth dotted "e) 
and lhe Gaussian averaged density & ( q )  (smoolh full curve) of the quasi-energy states 
in position span are shown. 

on the torus by a two-dimensional Gaussian and projecting the resulting averaged 
density onto configuration space. In the quantum mechanical case, this gives a Husimi 
distribution of the wavefunction projected down onto the q-axis. 'QJpical classical and 
quantum mechanical density profiles are shown in figure 5. The basic skeleton of 
the classical densities is formed by the singularities resulting from vertical tangents 
to the phase space tori. Fbr low (n = 0) and high (n = 131) regular states we have 
WO singularities and for the lower states in the upper regular regime (e.g. n = 105 
and 107) there are three such singularities (compare the phase space plots in figure 
3). For tori, sufficiently far away &om larger resonances, the classical and quantum 
mechanical coarse-grained densities agree extremely well, making it very difficult to 
distinguish the two profiles graphically (see figure 5). However, near resonances the 
classical density shows, in addition to the usual caustics, pronounced extra peaks. 
This is demonstrated in figure 5 for the state n = 105. These additional peaks result 
from a non-uniform accumulation of iterates of the Paincar6 mapping near hyperbolic 
fixed points dividing the separatrix of a family of elliptic islands. In particular, when 
the invariant curve of the torus comes close to the stable or unstable manifold of 
the separatnx, the iterations Wiji strongiy accumuiate towards hyperboiic &ea p in t s  
as illustrated in figure 6. This effect can be amplified when the slope and curvature 
of the invariant curve changes drastically near the fixed point in such a way that the 
projected density onto the q-axis is increased. For the quantized torus with n = 105 a 
nearby chain of 17 small islands can be located. The qcoordinates of the separating 
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hyperbolic fixed points HI, .  . . , H,, coincide precisely with the positions of the extra 
peaks in the classical density in figure 5 for n = 105. Figure 7 finally shows an 
example of a non-smoothed wavefunction for the regular state number a = 93 with 
semiclassical quantum number n = 107. In addition to the overall density profile 
already visible in the smoothed density shown in figure 5 one observes a regular 
pattern of almost equally spaced oscillations. Its spacing Aq F;: 0.05 agrees nicely 
with the semiclassical estimate Aq F;: 2?rh/p with p being the an average classical 
momentum during one oscillation (in the region 0 < q < 1.5 we can use p % 2, 
which gives Aq F;: 0.047). 

- 
0 

,o 0.0- 
sr" 

F@rc 6, Quantized toms I,, near a resonance. The dots (a) lepresent iterates of lhe 
Poincak mapping which accumulate near the hyperbolic fued points H I ,  H z ,  .... 

a =I07 
0.31 

-0.3cp, 
- I  0 I 2 

q 

ngum 7. Quantum quasienergy wavefundion & ( q , t  = 0) for State number a = 93 
with semiclassical quantum numkr n = 107. 

5. Concluding remarks 

It has been demonstrated in the present article that a considerable part of the quasi- 
enery spectrum of a forced anharmonic oscillator can be considered as regular, which 
implies that the states, which are found to be exponentially localized in state space, 
can be semiclassically quantized by EBK vortex tube quantization. The authors are 
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aware of the fact that the numerical procedure used in their computation may not be 
the most efficient one. Wurier transform techniques, for example, seem to be very 
promising, but such a development was not within the scope of the present study. 
More interesting, however, will be the derivation of a semiclassical description of the 
quasi-energy spectrum in the classically chaotic regime. This can be done in terms of 
Gutzwillers's periodic orbit theory [7]. Bbor  [22] has developed such a formalism for 
semiclassically quantizing an area-preserving map. The extension of these methods to 
continuously driven systems are currently under investigation and will be addressed 
elsewhere. 

Finally, we would like to point out that the results obtained for the somewhat 
specific example of a forced quartic oscillator can be extended to more general 
cases like the qzk-oscillator [SI or to more realistic systems modelling field-induced 
transitions in molecular systems, as for instance a periodically forced rotor [23]. 
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